Use the image to answer the question.

A coordinate plane has an increasing solid curve and a dotted straight line plotted on it, corresponding to two functions.

Given that the graph f(x)
is linear and the graph g(x)
is exponential solve the following problem:

Consider the graph of Function #1 and Function #2. How do the growth rates of the two functions compare?

(1 point)
Responses

Initially, Function #1 has the greater growth rate. After x=32, the growth rate of Function #2 surpasses the growth rate of Function #1.
Initially, Function #1 has the greater growth rate. After x equals 32 , the growth rate of Function #2 surpasses the growth rate of Function #1.

Initially, Function #2 has the greater growth rate. After x=32, the growth rate of Function #1 surpasses the growth rate of Function #2.
Initially, Function #2 has the greater growth rate. After x equals 32 , the growth rate of Function #1 surpasses the growth rate of Function #2.

The growth rate of Function #1 is always greater than the growth rate of Function #2.
The growth rate of Function #1 is always greater than the growth rate of Function #2.

The growth rate of Function #2 is always greater than the growth rate of Function #1.
The growth rate of Function #2 is always greater than the growth rate of Function #1.
Skip to navigation

1 answer

To compare the growth rates of the two functions based on the graphs described, we need to understand the nature of the functions involved: Function #1 is linear and Function #2 is exponential.

In general:

  1. A linear function grows at a constant rate. This means that the increase in value is uniform over any interval of x.
  2. An exponential function grows at a rate that increases rapidly as x increases. This means that after a certain point, the exponential function will begin to grow faster than any linear function.

Based on this explanation, we can deduce that:

  • Initially, when x is small, the linear function (Function #1) might grow faster than the exponential function (Function #2).
  • However, as x increases, specifically after a certain point (as indicated by x = 32 in the statements), the exponential function will surpass the linear function in terms of growth rate.

Therefore, the correct choice that reflects this comparison is:

"Initially, Function #1 has the greater growth rate. After x = 32, the growth rate of Function #2 surpasses the growth rate of Function #1."

Similar Questions
  1. Use the image to answer the question.A coordinate plane shows an increasing solid curve and a dotted straight line plotted on
    1. answers icon 1 answer
  2. Use the image to answer the question.A coordinate plane's x-axis ranges from negative 1 to 6 and its y-axis ranges from negative
    1. answers icon 1 answer
  3. Use the image to answer the question.A solid distribution curve A, a dotted distribution curve B, and a dashed dotted
    1. answers icon 11 answers
  4. Use the image to answer the question.A graph with x and y axes shows four curves labeled A, B, C, and D. Curve A has a step-like
    1. answers icon 1 answer
more similar questions