Use the image to answer the question.

A cone is marked with a height of 12 centimeters and a diameter of 11 centimeters, both shown as perpendicular dotted lines. The slant height is 9 centimeters.

What is the height of the right circular cone?

(1 point)
Responses

9 cm
9 cm

11 cm
11 cm

12 cm
12 cm

5.5 cm
5.5 cm
Skip to navigation

1 answer

We can use the Pythagorean theorem to find the height of the right circular cone. The slant height, height, and radius of the cone form a right triangle.

The slant height is 9 centimeters, and the radius is half the diameter, so it is 11/2 = 5.5 centimeters.

Using the Pythagorean theorem, we have:

(height)^2 + (radius)^2 = (slant height)^2
(height)^2 + (5.5)^2 = (9)^2
(height)^2 + 30.25 = 81
(height)^2 = 81 - 30.25
(height)^2 = 50.75
height = sqrt(50.75)
height ≈ 7.12 cm

So, the height of the right circular cone is approximately 7.12 centimeters.
Similar Questions
  1. Cylinders and Cones Quick Check2 of 52 of 5 Items Question Use the image to answer the question. A cone shows a height marked as
    1. answers icon 3 answers
  2. Cylinders and Cones Quick Check2 of 52 of 5 Items Question Use the image to answer the question. A cone shows a height marked as
    1. answers icon 1 answer
  3. QuestionUse the image to answer the question. A hemisphere is placed on top of an inverted cone. The back of the circumference,
    1. answers icon 1 answer
  4. Use the image to answer the question.A cone is marked with a height of 15 centimeters and a diameter of 16 centimeters, both
    1. answers icon 1 answer
more similar questions