Asked by Tom
use the formula
cos(x+iy)=cosxcosiy-sinxsiniy
to find two imaginary numbers whose cosine is 3
cos(x+iy)=cosxcosiy-sinxsiniy =
cos(x)cosh(y) - i sin(x)sinh(y) = 3
Equating imaginary parts gives:
sin(x)sinh(y) = 0
You know that y cannot be zero, otherwise the complex number woyuld be real, but for real arguments the cosine is always between -1 and 1. If y is not zero, sinh(y) is not zero, and therefore sin(x) must be zero. This means that x is an integer times pi.
x = n pi
Equating the real parts gives:
cos(x)cosh(y) = 3
Insert x = n pi, using
cos(n pi) = (-1)^n
gives:
cosh(y) = 3*(-1)^n
cosh for real arguments is always positive, so n must be even. And we see that:
y = arccosh(3)
So, the complex numbers are of the form:
2n pi + arccosh(3)i
Thanks
thanks
cos(x+iy)=cosxcosiy-sinxsiniy
to find two imaginary numbers whose cosine is 3
cos(x+iy)=cosxcosiy-sinxsiniy =
cos(x)cosh(y) - i sin(x)sinh(y) = 3
Equating imaginary parts gives:
sin(x)sinh(y) = 0
You know that y cannot be zero, otherwise the complex number woyuld be real, but for real arguments the cosine is always between -1 and 1. If y is not zero, sinh(y) is not zero, and therefore sin(x) must be zero. This means that x is an integer times pi.
x = n pi
Equating the real parts gives:
cos(x)cosh(y) = 3
Insert x = n pi, using
cos(n pi) = (-1)^n
gives:
cosh(y) = 3*(-1)^n
cosh for real arguments is always positive, so n must be even. And we see that:
y = arccosh(3)
So, the complex numbers are of the form:
2n pi + arccosh(3)i
Thanks
thanks
Answers
There are no human answers yet.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.