To answer your question regarding the measure of angle 3 based on the given angle 1 which measures 63°, we need to know the relationship between angle 1 and angle 3.
If angle 3 is positioned such that it is directly opposite angle 1 (for example, if they are formed by two intersecting lines), then angle 1 and angle 3 are vertical angles, which means they are congruent. Therefore, if angle 1 is 63°, then angle 3 would also be 63°.
If angle 3 is positioned such that it is on the same side of a transversal and corresponding to angle 1, then they would be corresponding angles, and angle 3 would also be 63°.
If angle 3 is adjacent to angle 1 and they form a linear pair (i.e., they add up to 180°), then angle 3 would be 117° because 180° - 63° = 117°.
Since you did not include the specific figure or the relationship of the angles, it's hard to definitively conclude which option is correct. However, based on standard geometric principles:
- If angle 3 is vertical to angle 1 or corresponds to it: Angle 3 is 63° because angle 1 and angle 3 are vertical angles (or corresponding angles).
- If angle 3 is supplementary to angle 1: Angle 3 is 117°.
Please select the option that best describes the relationship between angle 1 and angle 3 in the figure provided.