Asked by lolo
Use Nets to Solve Triangular Problems Quick Check
1 of 51 of 5 Items
Question
Use the image to answer the question.
An illustration shows a triangular prism placed sideways with one of its rectangular faces as the base. Dimensions are labeled. The length and width of the rectangular base are 17 centimeters and 13 centimeters respectively. The face visible in front appears as a triangle. The base width of the triangle is 13 centimeters. The perpendicular leg of the triangle is 7.48 centimeters and the slanting leg (hypotenuse) is 15 centimeters. The edges that are not visible are represented by dashed lines.
Apply the technique of using nets to find the surface area of this triangular prism. Your answer should have two decimal places.
(1 point)
Responses
97.24 cm2
, 97.24 cm squared
573.24 cm2
, 573.24 cm squared
700.40 cm2
700.40 cm squared
603.16 cm2
Answers
Answered by
lolo
Use the image to answer the question.
An illustration shows a 2 D net of a triangular prism with all of its sides open and visible. Dimensions are labeled. The parts that are not visible in 3 D view are marked with dashed lines. It appears as three vertical rectangles placed vertically. The length and width of the top rectangle are 6.5 feet and 5 feet respectively. The length and width of the middle rectangle are 5.5 feet and 5 feet respectively. The length of the bottom rectangle is 5 feet. Two identical triangles adjoin the middle rectangle on both sides with legs measuring 3.5 feet and 5.5 feet. The hypotenuse measures 6.5 feet.
Write an equation for the surface area of both triangular bases of the net.
(1 point)
Responses
SA=12(3.5)(5)
, upper S upper A equals Start Fraction 1 over 2 End Fraction left parenthesis 3.5 right parenthesis left parenthesis 5 right parenthesis
SA=(12)(5)(6.5)
, upper S upper A equals left parenthesis Start Fraction 1 over 2 End Fraction right parenthesis left parenthesis 5 right parenthesis left parenthesis 6.5 right parenthesis
SA=2(12)(3.5)(5.5)
upper S upper A equals 2 left parenthesis Start Fraction 1 over 2 End Fraction right parenthesis left parenthesis 3.5 right parenthesis left parenthesis 5.5 right parenthesis
SA=2(12)(6.1)(3.5)
, upper S upper A equals 2 left parenthesis Start Fraction 1 over 2 End Fraction right parenthesis left parenthesis 6.1 right parenthesis left parenthesis 3.5 right parenthesis
Skip to navigation
An illustration shows a 2 D net of a triangular prism with all of its sides open and visible. Dimensions are labeled. The parts that are not visible in 3 D view are marked with dashed lines. It appears as three vertical rectangles placed vertically. The length and width of the top rectangle are 6.5 feet and 5 feet respectively. The length and width of the middle rectangle are 5.5 feet and 5 feet respectively. The length of the bottom rectangle is 5 feet. Two identical triangles adjoin the middle rectangle on both sides with legs measuring 3.5 feet and 5.5 feet. The hypotenuse measures 6.5 feet.
Write an equation for the surface area of both triangular bases of the net.
(1 point)
Responses
SA=12(3.5)(5)
, upper S upper A equals Start Fraction 1 over 2 End Fraction left parenthesis 3.5 right parenthesis left parenthesis 5 right parenthesis
SA=(12)(5)(6.5)
, upper S upper A equals left parenthesis Start Fraction 1 over 2 End Fraction right parenthesis left parenthesis 5 right parenthesis left parenthesis 6.5 right parenthesis
SA=2(12)(3.5)(5.5)
upper S upper A equals 2 left parenthesis Start Fraction 1 over 2 End Fraction right parenthesis left parenthesis 3.5 right parenthesis left parenthesis 5.5 right parenthesis
SA=2(12)(6.1)(3.5)
, upper S upper A equals 2 left parenthesis Start Fraction 1 over 2 End Fraction right parenthesis left parenthesis 6.1 right parenthesis left parenthesis 3.5 right parenthesis
Skip to navigation
Answered by
lolo
The 2005 world record for the longest sandwich is 3.6 meters with a width of 3.6 meters and a thickness of 0.44 meters. If you cut the sandwich in half diagonally, it would create a triangular prism with a hypotenuse of 5.1 meters. Apply the technique of using nets to find the surface area.(1 point)
Responses
18.37 m2
, 18.37 m squared
14.63 m2
, 14.63 m squared
16.22 m2
16.22 m squared
12.98 m2
, 12.98 m squared
Responses
18.37 m2
, 18.37 m squared
14.63 m2
, 14.63 m squared
16.22 m2
16.22 m squared
12.98 m2
, 12.98 m squared
Answered by
lolo
thats wrong
Answered by
lolo
A triangular prism has a height of 1.5 inches and right triangular bases with a height of 1.5 inches, length of 5 inches, and a hypotenuse measuring 5.22 inches. What is the prism's surface area? (1 point)
Responses
25.41 in.2
, , 25.41 in. squared
25.08 in.2
25.08 in. squared
30.33 in.2
, 30.33 in. squared
24.75 in.2
, , 24.75 in. squared
Responses
25.41 in.2
, , 25.41 in. squared
25.08 in.2
25.08 in. squared
30.33 in.2
, 30.33 in. squared
24.75 in.2
, , 24.75 in. squared
Answered by
lolo
Calculate the surface area of a triangular prism shaped tent if the height is 9 ft., the length is 24 ft., the width is 20 ft., and the hypotenuse of the cover is 13.45 ft.(1 point)
Responses
1,305.60 ft.2
1,305.60 ft. squared
1,215.60 ft.2
, 1,215.60 ft. squared
1,462.80 ft.2
, 1,462.80 ft. squared
982.8 ft.2
Responses
1,305.60 ft.2
1,305.60 ft. squared
1,215.60 ft.2
, 1,215.60 ft. squared
1,462.80 ft.2
, 1,462.80 ft. squared
982.8 ft.2
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.