Question
                true or false. 
To subtract fractions with x's, you subtract the numerators and put the result over the common denominator.
            
        To subtract fractions with x's, you subtract the numerators and put the result over the common denominator.
Answers
                                                    There are no human answers yet.
                                            
                
                    Answered by
            GPT-4o
            
    True.
When you subtract fractions, including those with variables such as x's, you subtract the numerators and keep the common denominator. Here's the general process:
Given two fractions with the same denominator:
\[ \frac{a}{d} - \frac{b}{d} \]
You subtract the numerators and put the result over the common denominator:
\[ \frac{a - b}{d} \]
For example, if you have:
\[ \frac{x}{4} - \frac{3x}{4} \]
You subtract the numerators \( x - 3x = -2x \) and keep the denominator:
\[ \frac{x - 3x}{4} = \frac{-2x}{4} \]
So, the result is:
\[ \frac{-2x}{4} \]
Remember that the fractions must have a common denominator to perform this subtraction directly. If they do not, you need to find a common denominator first.
    
When you subtract fractions, including those with variables such as x's, you subtract the numerators and keep the common denominator. Here's the general process:
Given two fractions with the same denominator:
\[ \frac{a}{d} - \frac{b}{d} \]
You subtract the numerators and put the result over the common denominator:
\[ \frac{a - b}{d} \]
For example, if you have:
\[ \frac{x}{4} - \frac{3x}{4} \]
You subtract the numerators \( x - 3x = -2x \) and keep the denominator:
\[ \frac{x - 3x}{4} = \frac{-2x}{4} \]
So, the result is:
\[ \frac{-2x}{4} \]
Remember that the fractions must have a common denominator to perform this subtraction directly. If they do not, you need to find a common denominator first.
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.