To find the correct equation that represents the relationship between pounds (x) and kilograms (y), we need to analyze the conversions provided:
- 5 pounds = 2.27 kilograms (approximately)
- 11 pounds = 4.99 kilograms (approximately)
- 17 pounds = 7.71 kilograms (approximately)
- 19 pounds = 8.64 kilograms (approximately)
- 124 pounds = 56.28 kilograms (approximately)
To determine a relationship, we can observe that 1 pound is approximately equal to 0.4536 kilograms. Therefore, if we take the conversion factor more precisely, we know:
\[ y = 0.4536x \]
Now, if we scale it to something more familiar or rounded for the choices given, we can use an approximation:
1 pound ≈ 0.45 kilograms means that: \[ y \approx 2.2x \text{ would be an approximate conversion for higher ranges of x.} \]
In the options provided, the equation that is consistent with the conversion factor is:
y = 2.2x
Thus, the correct response is:
y = 2.2x