Asked by fefe

The size of an antler on a deer depends linearly on the age of the animal. For a mule deer in the Cache la poudre deer herd in Colorado, the antler begins growing at age 10 months and reaches a weight of 1.05 pounds after 70 months. Let w(t) be the weight of the antler for a deer of t months.

a. Find the formula for w(t).

b. What will the antler weight after 40 months ?

c. At what age will the antler weigh 0.7 pound ?

d. How much is the weight increasing each month ?

Being linear means...

weight= m*time + constant

You are given that weight is 0 at t=10, and at t=70, weight is 1.05
0=m*10 + C
1.05=m70 + C
solve those for m,and C.

There exists a shortcut for such problems.

If you know that W(t) = 0 at t = 10, then you know that W(t) must contain a factor (t-10). You can fix the prefactor of (t-10) by using the value at t = 70.

This generalizes to more complicated problems where you are given 3 values and have to find a quandratic equation, or more points and have to find a higher order polynomial.

Suppose you know that W(t) is an n-th degree polynomial and:

W(t1) = W1

W(t2) = W2

W(t3) = W3

etc...

W(tn) = Wn

Then from the first data point W(t1)= W1, it follows that

W(t) - W1

equals zero at t = t1. This means that

W(t) - W1 contans a factor (t - t1).

You then define the polynomial

P2(t) = (W(t) - W1)/(t-t1)

and evaluate that for all the remaining data points. The value at the first is undetermined 0/0. Now P2(t) is one degree less than W(t), so you have enough equations to fix this polynomial.

You then use the same trick, i.e. you define:

P3(t) = (P2(t) - W2)/(t - t2)

etc. etc. until you get to the trivial case. Then you work your way back to find W(t).

Answers

There are no human answers yet.
There are no AI answers yet. The ability to request AI answers is coming soon!

Related Questions