Let's analyze the statements based on the information given.
The band sold 400 T-shirts on Saturday, and on Sunday, it will sell 30 percent of that amount:
- Calculate 30 percent of 400 T-shirts: \[ 30% \text{ of } 400 = 0.3 \times 400 = 120 \text{ T-shirts} \]
Now let's evaluate each statement:
A. The answer will be less than 400 because 30 is less than 100.
- True. Since 120 is less than 400, this statement is accurate.
B. The answer will be greater than 400 because 30 percent is greater than 100.
- False. 30 percent of 400 is 120, which is not greater than 400.
C. (100)(4) = 400, so 30(4) is the number of T-shirts the band will sell on Sunday.
- False. This statement does not represent the calculation correctly. 30 times 4 does not give us the percentage relationship to find 30% of 400.
D. 400 + 30 is the number of T-shirts the band will sell on Sunday.
- False. This equation does not describe the problem accurately. The band sells 30% of the T-shirts sold on Saturday, not adding to Saturday’s total.
E. The band will sell 430 T-shirts on Sunday.
- False. The band sells 120 T-shirts on Sunday, not 430.
F. The band will sell 120 T-shirts on Sunday.
- True. Based on the calculations, this statement is correct.
So, the true statements about the number of T-shirts that the band will sell on Sunday are:
- A
- F