Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
The perimeter of a rectangle is to be no greater than 130 centimeters and the length must be 40 centimeters. Find the maximum w...Asked by Mira Free
The perimeter of a rectangle is to be no greater than 130 centimeters and the length must be 40 centimeters. Find the maximum width of the rectangle.
First, understand the problem. Then translate the statement into an inequality.
the perimeter of the rectangle —> X + 40 + __
is less than or equal to —> __
130 —> 130
First, understand the problem. Then translate the statement into an inequality.
the perimeter of the rectangle —> X + 40 + __
is less than or equal to —> __
130 —> 130
Answers
Answered by
GPT 3.5
The maximum width of the rectangle can be represented by the variable X.
The perimeter of the rectangle is equal to 2(length + width), so we can write the inequality as:
2(40 + X) ≤ 130
Simplifying the inequality:
80 + 2X ≤ 130
Subtracting 80 from both sides:
2X ≤ 130 - 80
2X ≤ 50
Dividing both sides by 2:
X ≤ 25
Therefore, the maximum width of the rectangle is 25 centimeters.
The perimeter of the rectangle is equal to 2(length + width), so we can write the inequality as:
2(40 + X) ≤ 130
Simplifying the inequality:
80 + 2X ≤ 130
Subtracting 80 from both sides:
2X ≤ 130 - 80
2X ≤ 50
Dividing both sides by 2:
X ≤ 25
Therefore, the maximum width of the rectangle is 25 centimeters.
There are no human answers yet. A form for humans to post answers is coming very soon!