Asked by Aparna

The function f is defined by f(x)= (25-x^2)^(1/2) for -5 less than or = x less than or = 5
A) find f'(x)
B) write an equation for the tangent to the graph of f at x=3
C) let g be the function defined by g(x)= (f(x) for -5<or=x<or=-3)and (x+7 for -3<or=x<or=5)
D) find the value of the intagral 5 over 0 of x(25-x^2)^(1/2)dx

Answers

Answered by Steve
do you have no idea at all about any of these questions? Hard to believe this would come up till the topics have been covered. They look like pretty straightforward calculus and algebra operations.

How far do you get?
Answered by Aparna
i found A and B, just checking if they're right. C i can never remember how to do these. D i haven't tried yet but i could probably figure out but i figured since i was putting the rest up i would do it as well
Answered by Steve
There's nothing to figure out for C. They're just defining a new function. Not sure why it's even there.

For D, it's pretty straightforward. Let
u = 25-x^2
then du = -2x dx and we have

∫[0,5] x√(25-x^2) dx
= ∫[5,0] -1/2 √u du
and it's clear sailing from there on
Answered by Aparna
thank youu
Answered by Steve
A: d/dx √(25-x^2) = -x/√(25-x^2)

B. At x=3, f(x)=4, so
f'(3) = -3/4
Now you have a point (3,4) and a slope: -3/4
y-4 = -3/4 (x-3)
There are no AI answers yet. The ability to request AI answers is coming soon!

Related Questions