Asked by amit sharma
The digits of a three digit number A are written in the reverse order to form another three digit number B. If B > A and B – A is perfectly divisible by 7, then which of the following is necessarily true?
1. 100 < A < 299 2. 106 < A < 305
3. 112 < A < 311 4. 118 < A < 317
1. 100 < A < 299 2. 106 < A < 305
3. 112 < A < 311 4. 118 < A < 317
Answers
Answered by
Steve
If the digits of A are abc, Then B is cba.
100c+10b+a - 100a+10b+c = 7k
99c-99a = 7k
99(c-a) = 7k
so, c-a is a multiple of 7. In fact, since c and a are both single digits, c-a=7.
so, A must begin with 1 or 2, making c either 8 or 9
So, of the given choices, 100<A<299
100c+10b+a - 100a+10b+c = 7k
99c-99a = 7k
99(c-a) = 7k
so, c-a is a multiple of 7. In fact, since c and a are both single digits, c-a=7.
so, A must begin with 1 or 2, making c either 8 or 9
So, of the given choices, 100<A<299
Answered by
amit sharma
correct answer is 2. 106 < A < 305
Answered by
Steve
Hmmm.
Since A=101,102,103,104,105,300,301,302,303,304 all don't work,
Both answers are true.
Since actually 107 works and 299 works,
107 <= A <= 299
You are right. I should not have excluded 299 from the solution set.
Since A=101,102,103,104,105,300,301,302,303,304 all don't work,
Both answers are true.
Since actually 107 works and 299 works,
107 <= A <= 299
You are right. I should not have excluded 299 from the solution set.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.