inflection points occur where f"(x) = 0
f"(x) = -(3x^2-40x+51)
So, just find the roots of that to get the inflection points for f(x)
Suppose that it is given to you that
f′(x)=(x+3)(8−x)(x−15)
The first inflection point (from the left) for f(x) occurs at x=
The second inflection point (from the left) for f(x) occurs at x=
3 answers
Suppose that f(x)=x^[1/3](x+3)^[2/3]
(A) Find all critical values of f. If there are no critical values, enter None . If there are more than one, enter them separated by commas.
Critical value(s) =
(B) Use interval notation to indicate where f(x) is increasing.
(C) Use interval notation to indicate where f(x) is decreasing.
Decreasing:
(D) Find the x-coordinates of all local maxima and minima of f
(E) Use interval notation to indicate where f(x) is concave up and concave down.
(F) Find all inflection points of f.
(A) Find all critical values of f. If there are no critical values, enter None . If there are more than one, enter them separated by commas.
Critical value(s) =
(B) Use interval notation to indicate where f(x) is increasing.
(C) Use interval notation to indicate where f(x) is decreasing.
Decreasing:
(D) Find the x-coordinates of all local maxima and minima of f
(E) Use interval notation to indicate where f(x) is concave up and concave down.
(F) Find all inflection points of f.
Post a new question please