Study the diagram of circle K,

where JL¯¯¯¯¯¯¯
and LM¯¯¯¯¯¯¯¯¯
are tangent to circle K
at points J
and M,
respectively.

Also, JL=3x+10
and ML=7x−6.
The diagram as described in the problem, with radius T L and segment L K drawn. What is the length of LM¯¯¯¯¯¯¯¯¯?
Responses

16
16

22
22

4
4

17.6

1 answer

4

To find the length of segment LM¯¯¯¯¯¯¯¯¯, we need to find the value of x. Since JL¯¯¯¯¯¯¯ and LM¯¯¯¯¯¯¯¯¯ are tangent to circle K at points J and M, we know that JL and LM are both equal to the radius of circle K, which we will call r.

Therefore, from the given information:
JL = r = 3x + 10
LM = r = 7x - 6

Setting the two equations equal to each other:
3x + 10 = 7x - 6
16 = 4x
x = 4

Now that we have found the value of x, we can substitute it back into either JL or LM to find the length of LM:
LM = 7x - 6
LM = 7(4) - 6
LM = 28 - 6
LM = 22

Therefore, the length of segment LM¯¯¯¯¯¯¯¯¯ is 22.
Similar Questions
    1. answers icon 1 answer
    1. answers icon 3 answers
  1. m<S=30, m(arc)RS=84,and RU is tangent to the circle at R find m<U.It's a circle with a triangle inscribed, only the s and r lie
    1. answers icon 40 answers
  2. A)modifying above upper A upper C with right pointing arrow is tangent to circle O at A. The diagram is not drawn to scale. A
    1. answers icon 1 answer
more similar questions