Asked by Devon
Standard Normanl Drill:
A. Find the number z such that the proportion of observations that are less than z in a standard Normal distribution is 0.8.
B. Find the number z such that 35% of all observations from a standard Normal distribution are greater than z.
i have now idea what they are asking, any help?
A. Find the number z such that the proportion of observations that are less than z in a standard Normal distribution is 0.8.
B. Find the number z such that 35% of all observations from a standard Normal distribution are greater than z.
i have now idea what they are asking, any help?
Answers
Answered by
MathGuru
It helps to know how to read a z-table to answer these kinds of questions.
For part A, you will need to find a z value where 80% is below the z and 20% is above the z. Remember that the mean divides the distribution in half: 50% is below the mean and 50% is above the mean. Therefore, 80% is above the mean and you will have to look within the table at .30 (most tables go out to 4 places after the decimal point, so the table might show .3000) or closest to that value to find the z if your table shows from mean to z values. Tables can be set up differently, so be mindful of that when you look for these values.
For part B, you will need to find a z value where 65% is below the z and 35% is above the z. Therefore, in a table that shows from mean to z values, you will look for .15 (or .1500) in the table to find the z.
Both z values will be positive because they are above the mean of the distribution. (Negative z values are below the mean of the distribution.)
I hope this will help.
For part A, you will need to find a z value where 80% is below the z and 20% is above the z. Remember that the mean divides the distribution in half: 50% is below the mean and 50% is above the mean. Therefore, 80% is above the mean and you will have to look within the table at .30 (most tables go out to 4 places after the decimal point, so the table might show .3000) or closest to that value to find the z if your table shows from mean to z values. Tables can be set up differently, so be mindful of that when you look for these values.
For part B, you will need to find a z value where 65% is below the z and 35% is above the z. Therefore, in a table that shows from mean to z values, you will look for .15 (or .1500) in the table to find the z.
Both z values will be positive because they are above the mean of the distribution. (Negative z values are below the mean of the distribution.)
I hope this will help.
Answered by
Jasmin
Find the number z such that 35% of all observations from a standard Normal distribution are greater than z
Answered by
Kathy F Cubias
Find the number Z such that the PROPORTION of observations that are GREATER THAN Z in a STANDARD NORMAL DISTRIBUTION is .3500.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.