Solve x+10.5<20.2

. Make sure to write your inequality so that x
comes first.

Note: You will find the option to add a >
, <
, ≥
, or ≤
symbol in the Comparison (<)
keyboard.

(1 point) explain

1 answer

To solve the inequality \( x + 10.5 < 20.2 \), we want to isolate \( x \). Here are the steps:

  1. Subtract \( 10.5 \) from both sides of the inequality:

    \[ x + 10.5 - 10.5 < 20.2 - 10.5 \]

  2. This simplifies to:

    \[ x < 20.2 - 10.5 \]

  3. Now, calculate \( 20.2 - 10.5 \):

    \[ 20.2 - 10.5 = 9.7 \]

  4. Therefore, the inequality can be rewritten as:

    \[ x < 9.7 \]

Now, you want the variable \( x \) to come first. So, we can write this as:

\[ x < 9.7 \]

This means that \( x \) can take any value less than \( 9.7 \).

Explanation:

  • We started with the inequality \( x + 10.5 < 20.2 \) and aimed to isolate \( x \).
  • By subtracting \( 10.5 \) from both sides, we found the maximum value \( x \) can take, which is \( 9.7 \).
  • Finally, we expressed the result in the standard form with \( x \) coming first in the inequality.