Solve the inequality both algebraically and graphically. Draw a number line graph of the solution and give interval notation.

5xplus2less thanminusStartFraction 6 x Over 5 EndFraction
plus6
Question content area bottom
Part 1
The solution as an inequality is
  
enter your response here.
​(Type an inequality. Simplify your answer. Use integers or fractions for any numbers in the​ expression.)
Part 2
The solution in interval notation is
  
enter your response here.
​(Type your answer in interval notation. Use integers or fractions for any numbers in the​ expression.)
Part 3
Choose the correct graph of the solution below.
A.
An infinite number line, labeled from 0 to 1, has tick marks in increments of StartFraction 1 Over 31 EndFraction. The region to the left of a right parenthesis at approximately 0.7 is shaded.
0
1
0
B.
An infinite number line, labeled from 0 to 1, has tick marks in increments of StartFraction 1 Over 31 EndFraction. The region to the right of a left bracket at approximately 0.7 is shaded.
0
1
0
C.
An infinite number line, labeled from 0 to 1, has tick marks in increments of StartFraction 1 Over 31 EndFraction. The region to the left of a right bracket at StartFraction 20 Over 31 EndFraction is shaded.
0
1
0
D.
An infinite number line, labeled from 0 to 1, has tick marks in increments of StartFraction 1 Over 31 EndFraction. The region to the right of a left bracket at StartFraction 20 Over 31 EndFraction is shaded.
0
1
0
E.
An infinite number line, labeled from 0 to 1, has tick marks in increments of StartFraction 1 Over 31 EndFraction. The region to the right of a left parenthesis at approximately 0.7 is shaded.
0
1
0
F.
An infinite number line, labeled from 0 to 1, has tick marks in increments of StartFraction 1 Over 31 EndFraction. The region to the left of a right parenthesis at StartFraction 20 Over 31 EndFraction is shaded.
0
1
0
G.
An infinite number line, labeled from 0 to 1, has tick marks in increments of StartFraction 1 Over 31 EndFraction. The region to the left of a right bracket at approximately 0.7 is shaded.
0
1
0
H.
An infinite number line, labeled from 0 to 1, has tick marks in increments of StartFraction 1 Over 31 EndFraction. The region to the right of a left parenthesis at StartFraction 20 Over 31 EndFraction is shaded.
0
1
0

1 answer

Let's solve the inequality step by step. The inequality we are given is:

\[ 5x + 2 < -\frac{6x}{5} + 6 \]

Part 1: Solve Algebraically

  1. Start by eliminating the fraction. We can multiply the entire inequality by 5 (which is positive, so the direction of the inequality remains the same):

    \[ 5(5x + 2) < 5\left(-\frac{6x}{5} + 6\right) \]

    This simplifies to:

    \[ 25x + 10 < -6x + 30 \]

  2. Next, combine like terms. Add \(6x\) to both sides:

    \[ 25x + 6x + 10 < 30 \]

    Which simplifies to:

    \[ 31x + 10 < 30 \]

  3. Subtract 10 from both sides:

    \[ 31x < 20 \]

  4. Divide by 31 (which is positive, so the direction of the inequality remains the same):

    \[ x < \frac{20}{31} \]

So the solution as an inequality is:

\[ x < \frac{20}{31} \]

Part 2: Interval Notation

In interval notation, this is expressed as:

\[ (-\infty, \frac{20}{31}) \]

Part 3: Number Line Graph

To represent the solution on a number line, you would shade to the left of \(\frac{20}{31}\) pointing out that this is an open interval (not including \(\frac{20}{31}\)).

Now among the options provided:

  • Since we are shading to the left of \(\frac{20}{31}\) with a right parenthesis (indicating that \(\frac{20}{31}\) is not included), the correct option would be:

C. An infinite number line, labeled from 0 to 1, has tick marks in increments of StartFraction 1 Over 31 EndFraction. The region to the left of a right bracket at StartFraction 20 Over 31 EndFraction is shaded.


To summarize:

  • Part 1: \[ x < \frac{20}{31} \]

  • Part 2: \[ (-\infty, \frac{20}{31}) \]

  • Part 3 selection: C.

Similar Questions
  1. Help me this bot keeps getting it wrongSolve for xx and graph the solution on the number line below. 7, plus, x, is less than, 6
    1. answers icon 1 answer
    1. answers icon 2 answers
    1. answers icon 1 answer
  2. Solve for xx and graph the solution on the number line below.3, x, plus, 10, is less than, minus, 2, or, 13, is less than, 3, x,
    1. answers icon 1 answer
more similar questions