Solve the inequality and describe the solution set. y – 6 ≥ 12 y – 6 ≥ 12 ​

5 answers

First, we will add 6 to both sides of the inequality:

y - 6 + 6 ≥ 12 + 6

Simplifying gives:

y ≥ 18

So the solution set is all real numbers greater than or equal to 18. We can write this as:
{y ∈ ℝ : y ≥ 18} or y ∈ [18, ∞).
Gabriella went skiing. She paid $35 to rent skis and $15 an hour to ski. If she paid a total of $95, how many hours did she ski? Write an algebraic equation to represent the situation and solve it.
Let h be the number of hours Gabriella skied. The total cost of skiing can be represented by the equation:

15h + 35 = 95

To solve for h, we first isolate the variable term by subtracting 35 from both sides:

15h = 60

Then, we divide both sides by 15 to solve for h:

h = 4

Therefore, Gabriella skied for 4 hours.
Note: Enter your answer and show all the steps that you use to solve this problem in the space provided.

Solve the equation.

c
4

5
=
4
To solve this equation, we will first multiply both sides by 4 to eliminate the fraction:

c/4 - 5 = 16

Next, we will add 5 to both sides to isolate the variable term:

c/4 = 21

Finally, we will multiply both sides by 4 to solve for c:

c = 84

Therefore, the solution to the equation is c = 84.