Solve the equation -x^2 -3x=5-3x and re-express the answer a complex number with the imaginary unit.

1 answer

To solve the equation -x^2 - 3x = 5 - 3x, we can start by simplifying both sides of the equation:

-x^2 - 3x = 5 - 3x
Adding 3x to both sides, we get:
-x^2 = 5

To solve for x, we need to isolate the x term. We can do this by multiplying both sides by -1:

x^2 = -5

From here, we can take the square root of both sides to solve for x:

x = ±√(-5)

Since taking the square root of a negative number results in an imaginary number, we can express the answer as a complex number. In this case, the answer would be:

x = ± √5i

So the solution to the equation -x^2 - 3x = 5 - 3x, expressed as a complex number, is x = ± √5i.
Similar Questions
  1. Complex Numbers Unit Test5 of 255 of 25 Items Question Solve the equation −x2−3x=5−3x and re-express the answer as a
    1. answers icon 1 answer
  2. only one anwserComplex Numbers Unit Test 5 of 255 of 25 Items Question Solve the equation −x2−3x=5−3x and re-express the
    1. answers icon 1 answer
    1. answers icon 1 answer
  3. Solve the equation −x2−3x=5−3x− 𝑥 2 − 3 𝑥 = 5 − 3 𝑥 and re-express the answer as a complex number with the
    1. answers icon 1 answer
more similar questions