To solve the equation \(4x = 3(x + 5) - 15\), we will first simplify the right-hand side.
-
Expand the right-hand side: \[ 3(x + 5) - 15 = 3x + 15 - 15 = 3x \]
-
Now we can rewrite the equation: \[ 4x = 3x \]
-
Next, isolate \(x\) by subtracting \(3x\) from both sides: \[ 4x - 3x = 0 \implies x = 0 \]
Since we found a single value for \(x\) (which is \(x = 0\)), we conclude that the equation has one solution.
The correct response is: The equation has one solution: x equals 0.