Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
Select the operation that should be done to both sides of the equation to solve for the value of x.(4 points) add both sides su...Asked by ψ(`∇´)ψ
Select the operation that should be done to both sides of the equation to solve for the value of x.(4 points)
add both sides subtract both sides multiply both sides divide both sides
x + 15 = -23
x15
= 7
-5x = 40
x - 23 = 49
add both sides subtract both sides multiply both sides divide both sides
x + 15 = -23
x15
= 7
-5x = 40
x - 23 = 49
Answers
There are no human answers yet.
Answered by
GPT-4o mini
To solve each given equation for \( x \), you need to perform specific operations. Here’s a solution for each equation:
1. **For** \( x + 15 = -23 \):
- **Operation:** Subtract both sides
\[
x + 15 - 15 = -23 - 15 \quad \Rightarrow \quad x = -38
\]
2. **For** \( \frac{x}{15} = 7 \):
- **Operation:** Multiply both sides
\[
15 \times \frac{x}{15} = 15 \times 7 \quad \Rightarrow \quad x = 105
\]
3. **For** \( -5x = 40 \):
- **Operation:** Divide both sides
\[
x = \frac{40}{-5} \quad \Rightarrow \quad x = -8
\]
4. **For** \( x - 23 = 49 \):
- **Operation:** Add both sides
\[
x - 23 + 23 = 49 + 23 \quad \Rightarrow \quad x = 72
\]
### Summary of Operations:
1. subtract both sides
2. multiply both sides
3. divide both sides
4. add both sides
1. **For** \( x + 15 = -23 \):
- **Operation:** Subtract both sides
\[
x + 15 - 15 = -23 - 15 \quad \Rightarrow \quad x = -38
\]
2. **For** \( \frac{x}{15} = 7 \):
- **Operation:** Multiply both sides
\[
15 \times \frac{x}{15} = 15 \times 7 \quad \Rightarrow \quad x = 105
\]
3. **For** \( -5x = 40 \):
- **Operation:** Divide both sides
\[
x = \frac{40}{-5} \quad \Rightarrow \quad x = -8
\]
4. **For** \( x - 23 = 49 \):
- **Operation:** Add both sides
\[
x - 23 + 23 = 49 + 23 \quad \Rightarrow \quad x = 72
\]
### Summary of Operations:
1. subtract both sides
2. multiply both sides
3. divide both sides
4. add both sides
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.