Section 1: Measurement

3.) The shelter as three sides. The length (back wall) is 3.25 feet. The total length of all 3 sides is 6 feet and the two other sides (width of the shelter) are the same length. What is the length of each side (width)?

(1 point)
Responses

Each side is 15 inches
Each side is 15 inches

Each side is 14 12
inches
Each side is 14 1 half inches

Each side is 19 12
inches
Each side is 19 1 half inches

Each side is 16 12
inches

1 answer

To find the width of the shelter, we can set up an equation based on the information provided.

We know:

  • The length (back wall) = 3.25 feet
  • The total length of all three sides = 6 feet
  • The two widths are equal, so we can call the width "w."

Thus, the equation can be formed as: \[ 3.25 + 2w = 6 \]

To isolate \(w\), we can subtract 3.25 from both sides: \[ 2w = 6 - 3.25 \] \[ 2w = 2.75 \]

Now, divide both sides by 2: \[ w = \frac{2.75}{2} \] \[ w = 1.375 \text{ feet} \]

Now, to convert 1.375 feet into inches:

  • 1 foot = 12 inches
  • 1.375 feet = 1.375 × 12 = 16.5 inches

Now we can express this in mixed fraction form as: 16.5 inches = 16 inches and a half inch = 16 1/2 inches.

So, the width of each side is: Each side is 16 1/2 inches.