Asked by Anon
Regular (not junk) emails arrive at your inbox according to a Poisson process with rate r; and junk emails arrive at your inbox according to an independent Poisson process with rate j. Assume both processes have been going on forever. Fix a time t to be 8 o'clock.
1. What is the expected length of the interval that t belongs to? That is, find the expected length of the interval from the last event before until the first event after t. Here, an event refers to the arrival of either kind of emails.
2. What is the probability that t belongs to an RR interval? (That is, the first event before, as well as the first event after time t, are both regular non-junk emails.)
3. What is the probability that between t and t+1, that exactly 2 emails, a regular email followed by a junk email, arrive?
1. What is the expected length of the interval that t belongs to? That is, find the expected length of the interval from the last event before until the first event after t. Here, an event refers to the arrival of either kind of emails.
2. What is the probability that t belongs to an RR interval? (That is, the first event before, as well as the first event after time t, are both regular non-junk emails.)
3. What is the probability that between t and t+1, that exactly 2 emails, a regular email followed by a junk email, arrive?
Answers
Answered by
BC
Can anyone solve this ???
Answered by
Anonymous
Does anyone have the answer please?
Answered by
Anonymous
Help, please!!!!!!!!!!!!!!!!!
Answered by
David
1) 1/(r + j)
2) (r / (r + j))^2
3) (r*j/2)*e^(-r-j)
2) (r / (r + j))^2
3) (r*j/2)*e^(-r-j)
Answered by
Kasum
1) 2/(r + j)
2) (r / (r + j))^2
3) (r*j/2)*e^(-r-j)
2) (r / (r + j))^2
3) (r*j/2)*e^(-r-j)
Answered by
Anonymous
dsf s
Answered by
Anonymous
fuljobz.com
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.