Quarter of one figure is equal to three times of second figure, If 12 is added in the four times of second figure, the resultant figure is equal to three times of first figure. Write down both the figures in the sequence?

1 answer

Let the first figure be \( x \) and the second figure be \( y \).

From the problem, we can derive two equations:

  1. Quarter of the first figure is equal to three times the second figure: \[ \frac{x}{4} = 3y \] Therefore, multiplying both sides by 4: \[ x = 12y \quad \text{(Equation 1)} \]

  2. If 12 is added to four times the second figure, the resultant figure equals three times the first figure: \[ 4y + 12 = 3x \] Substituting \( x \) from Equation 1: \[ 4y + 12 = 3(12y) \] Simplifying this gives: \[ 4y + 12 = 36y \] Rearranging the equation gives: \[ 12 = 36y - 4y \] \[ 12 = 32y \] Dividing by 32: \[ y = \frac{12}{32} = \frac{3}{8} \]

Now, substituting \( y \) back into Equation 1 to find \( x \): \[ x = 12y = 12 \times \frac{3}{8} = \frac{36}{8} = \frac{9}{2} = 4.5 \]

Thus, the first figure \( x \) is \( 4.5 \) and the second figure \( y \) is \( \frac{3}{8} \).

To summarize:

  • First figure \( x = 4.5 \)
  • Second figure \( y = \frac{3}{8} \)

In sequence: \( 4.5, \frac{3}{8} \).

Similar Questions
  1. Figure 1: chairFigure 2: tree Figure 3: nut Figure 4: House which scale drawing is a dilation that increases the size of the
    1. answers icon 1 answer
  2. Which combination of figures are similar and why?(1 point) Responses 1.Figure 1 and Figure 3; one figure is larger than the
    1. answers icon 7 answers
  3. Which combination of figures are similar and why?(1 point) Responses Figure 1 and Figure 3; one figure is larger than the other.
    1. answers icon 10 answers
    1. answers icon 1 answer
more similar questions