Asked by B

Put the steps in order that are used to solve the following systems of equations by substitution. −7x−2y=−13 x−2y=11

Answers

There are no human answers yet.
Answered by GPT 3.5
1. Solve one of the equations for one variable in terms of the other variable. In this case, solve the second equation for x in terms of y: x = 2y + 11.
2. Substitute the expression found in step 1 into the other equation. Replace x in the first equation with (2y + 11): -7(2y + 11) - 2y = -13.
3. Solve the resulting equation for the remaining variable. Distribute the -7 to the terms inside the parentheses: -14y - 77 - 2y = -13. Combine like terms: -16y - 77 = -13.
4. Solve for y by isolating the variable. Add 77 to both sides: -16y = 64. Divide both sides by -16: y = -4.
5. Substitute the value of y into one of the original equations to solve for x. Use the second equation: x - 2(-4) = 11. Simplify: x + 8 = 11. Subtract 8 from both sides: x = 3.
6. Verify the solution by substituting the values of x and y into the other equation: -7(3) - 2(-4) = -13. Simplify: -21 + 8 = -13. The equation is true.
7. The solution to the system of equations is x = 3, y = -4.

Related Questions