Asked by mathstudent

Prove that for all real values of a, b, t (theta):

(a * cos t + b * sin t)^2 <= a^2 + b^2

I will be happy to critique your work. Start on the left, square it,

(a * cos t + b * sin t)^2 =
a^2 (1 - sin^2t) + 2ab sin t cost+ b^2 (1 - cos^2 t)=
a^2 + b^2 - (a sin t - b cos t)^2
<= (a^2 + b^2)
because (a sin t - b cos t)^2 mus be positive or zero.

I don't know how you figured that out, but thanks. That works perfectly!

Answers

There are no human answers yet.
There are no AI answers yet. The ability to request AI answers is coming soon!

Related Questions