Asked by COFFEE
Please look at my work below:
Solve the initial-value problem.
y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4
r^2+4r+6=0,
r=(16 +/- Sqrt(4^2-4(1)(6)))/2(1)
r=(16 +/- Sqrt(-8))
r=8 +/- Sqrt(2)*i, alpha=8, Beta=Sqrt(2)
y(0)=2, e^(8*0)*(c1*cos(0)+c2*sin(0))=c2=2
y'(0)=4, c2=4
y(x)=e^(8x)*(2*cos(Sqrt(2)x)+4*sin(Sqrt(2)x))
What am I doing wrong here? This is the answer that I came up with but it is incorrect. Thanks.
For Further Reading
* Calculus - Second Order Differential Equations - bobpursley, Monday, July 9, 2007 at 10:09pm
your use of the quadratic formula is wrong. r= (-b +- sqrt (b^2 -4ac)/2a
you did not use -b.
--------------------------
y''+4y'+6y=0, y(0)=2, y'(0)=4
r^2+4r+6=0, r=(-4 +/- sqrt(16-4(1)(6))/2
r=-2 +/- sqrt(2)*i
y=e^-2x*(c1*cos(sqrt(2))x+c2*sin(sqrt(2))x)
y(0)=1*(c1+0)=2, c1=2
y'=(-1/2)e^-2x*(c1*(sin(sqrt(2)))/sqrt(2)-c2*(cos(sqrt(2)))/sqrt(2))
y'(0)=(-1/2)(0-1/sqrt(2)*c2)=4
c2=2/sqrt(2)
y(x)=e^-2x*(2cos(sqrt(2))x+(2/sqrt(2))sin(sqrt(x))x)
What is wrong with my solution? thanks.
Solve the initial-value problem.
y'' + 4y' + 6y = 0 , y(0) = 2 , y'(0) = 4
r^2+4r+6=0,
r=(16 +/- Sqrt(4^2-4(1)(6)))/2(1)
r=(16 +/- Sqrt(-8))
r=8 +/- Sqrt(2)*i, alpha=8, Beta=Sqrt(2)
y(0)=2, e^(8*0)*(c1*cos(0)+c2*sin(0))=c2=2
y'(0)=4, c2=4
y(x)=e^(8x)*(2*cos(Sqrt(2)x)+4*sin(Sqrt(2)x))
What am I doing wrong here? This is the answer that I came up with but it is incorrect. Thanks.
For Further Reading
* Calculus - Second Order Differential Equations - bobpursley, Monday, July 9, 2007 at 10:09pm
your use of the quadratic formula is wrong. r= (-b +- sqrt (b^2 -4ac)/2a
you did not use -b.
--------------------------
y''+4y'+6y=0, y(0)=2, y'(0)=4
r^2+4r+6=0, r=(-4 +/- sqrt(16-4(1)(6))/2
r=-2 +/- sqrt(2)*i
y=e^-2x*(c1*cos(sqrt(2))x+c2*sin(sqrt(2))x)
y(0)=1*(c1+0)=2, c1=2
y'=(-1/2)e^-2x*(c1*(sin(sqrt(2)))/sqrt(2)-c2*(cos(sqrt(2)))/sqrt(2))
y'(0)=(-1/2)(0-1/sqrt(2)*c2)=4
c2=2/sqrt(2)
y(x)=e^-2x*(2cos(sqrt(2))x+(2/sqrt(2))sin(sqrt(x))x)
What is wrong with my solution? thanks.
Answers
There are no human answers yet.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.