Asked by CJ
One of Kepler's three laws of planetary motion states that the square of the period, P, of a body orbiting the sun is proportional to the cube of its average distance, d, from the sun. The Earth has a period of 365 days and its distance from the sun is approximately 93,000,000 miles.
a.) Find P as a function of d.
b.) The planet Venus has an average distance from the sun of 67,000,000 miles. How many earth days are in a Venus year -- in other words, what is the period of the planet Venus?
a.) Find P as a function of d.
b.) The planet Venus has an average distance from the sun of 67,000,000 miles. How many earth days are in a Venus year -- in other words, what is the period of the planet Venus?
Answers
Answered by
oobleck
P^2 = kd^3
That means that
P^2/d^3 = k, a constant
So, you want to find d such that
P^2/67 = 365^2/93
You can ignore all those zeroes, as they cancel out
That means that
P^2/d^3 = k, a constant
So, you want to find d such that
P^2/67 = 365^2/93
You can ignore all those zeroes, as they cancel out
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.