Nya is building a garden in her yard. She has 24 feet of fencing for her garden and wants it to be in the shape of a rectangle with a length of 3 feet. What does the width need to be for this to work?

6

4

3

9

1 answer

To calculate the width of the garden, we need to use the fact that a rectangle has two sides of equal length opposite each other. Therefore, if the length of the garden is 3 feet, the opposite side must also be 3 feet.

Given that the total fencing available is 24 feet, we can calculate the width using the equation:

Perimeter of a rectangle = 2(length + width)

By substituting the known values into the equation, we get:

24 = 2(3 + width)

Simplifying further,

24 = 6 + 2width

Subtracting 6 from both sides,

18 = 2width

Lastly, we divide both sides by 2 to isolate the width:

width = 18/2
width = 9

Therefore, the width of the garden needs to be 9 feet for it to work.

So, the correct answer is: 9.