To find the measure of \( AC \), we start by understanding the setup described: Nozomi constructed a copy of line segment \( AB \) with point \( B \) as the endpoint. This means that \( AC \) is essentially twice the length of \( AB \).
Given that the measure of \( AB \) is \( 22.3 \) millimeters, the measure of \( AC \) would be calculated as follows:
\[ AC = AB + AB = 22.3 + 22.3 = 44.6 \text{ millimeters} \]
Therefore, the correct response is:
The measure of \( AC \) is \( 44.6 \) millimeters.