No Real Solutions Quick Check

5 of 55 of 5 Items

Question
Which system of equations has no real solutions?(1 point)
Responses

y = x2+1 and y =−x2 −1
y equals x squared plus 1 and y equals negative x squared minus 1

y=3x+1 and y=2x+2
y equals 3 x plus 1 and y equals 2 x plus 2

y = −x2+2 and y=x2
y equals negative x squared plus 2 and y equals x squared

y= x2 and y= x +1

1 answer

To determine which system of equations has no real solutions, we need to analyze each pair of equations to see if they intersect or not.

  1. y = x² + 1 and y = -x² - 1

    • The first equation (y = x² + 1) is a parabola that opens upwards with a vertex at (0, 1).
    • The second equation (y = -x² - 1) is a parabola that opens downwards with a vertex at (0, -1).
    • Since the vertex of the first parabola is above the x-axis, and the vertex of the second parabola is below the x-axis, these two curves will not intersect.
      No real solutions.
  2. y = 3x + 1 and y = 2x + 2

    • These are both linear equations. The first equation has a slope of 3 and the second one has a slope of 2. Since their slopes are different, they will intersect at exactly one point.
      Has real solutions.
  3. y = -x² + 2 and y = x²

    • Both are parabolas. The first one opens downward and the second one opens upward. Setting -x² + 2 = x² leads to -2x² + 2 = 0, which means x² = 1, thus x = ±1. So, they intersect at two points.
      Has real solutions.
  4. y = x² and y = x + 1

    • The first equation is a parabola opening upwards, while the second equation is a line. Setting x² = x + 1 leads to x² - x - 1 = 0, which has real solutions (by the quadratic formula: x = (1 ± √5) / 2). So they intersect at two points.
      Has real solutions.

In summary, the only system of equations without real solutions is: y = x² + 1 and y = -x² - 1.