Asked by HADEEL
Molten plastic is injected into the centre of a circular mold of constant height, H, through a small hole. The rate of injection is such that the radius of the plastic inside the mould increases so that
r(t)= 3t^2 -2t^3 where the mold has maximum radius of one unit. Compute the rate of change of volume of plastic in the mold, V (t), given that V = H(pie)r^2. At what time is the mold filling fastest and what is the value of dV/dt at that time?
r(t)= 3t^2 -2t^3 where the mold has maximum radius of one unit. Compute the rate of change of volume of plastic in the mold, V (t), given that V = H(pie)r^2. At what time is the mold filling fastest and what is the value of dV/dt at that time?
Answers
There are no human answers yet.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.