Michael is riding his bike on a bike trail. In 2 hours he has biked 4/5 of the total distance of the bike trail. He wants to know how long the total bike trail will take him to travel completely. At this rate, what is the total time it will take him to complete the entire bike trail?(1 point)

1 answer

To find out how long it will take Michael to complete the entire bike trail, we first understand that in 2 hours he has traveled \( \frac{4}{5} \) of the total distance.

Let \( d \) be the total distance of the bike trail. According to the information given, in 2 hours, Michael travels \( \frac{4}{5}d \).

We can set up a proportion to find out how long it will take him to travel the entire distance \( d \) at the same rate.

The time it takes to travel the complete distance \( d \) can be found as follows:

\[ \frac{4}{5}d \text{ takes 2 hours} \]

To find out how long it takes to travel \( d \), we set up the equation:

\[ d = \frac{5}{4} \times \text{(2 hours)} \]

Calculating that gives:

\[ d = \frac{5}{4} \times 2 = \frac{10}{4} = 2.5 \text{ hours} \]

Thus, the total time it will take him to complete the entire bike trail is \( \boxed{2.5} \) hours.