M6|L20 Combining Like Terms (Part 1)Sign out

Write an equivalent expression with the fewest possible terms.
To start writing an equivalent expression, write the products as sums. Use repeated addition to show 4 groups of a, then 1 group of b, then 2 groups of a, then 2 groups of b.
4a+1b+2a+2b
( + + + ) + ( ) + ( + ) + ( + )

1 answer

To write the expression \( 4a + 1b + 2a + 2b \) using repeated addition for each group, we can break it down as follows:

  1. 4 groups of \( a \): \[ a + a + a + a \]

  2. 1 group of \( b \): \[ b \]

  3. 2 groups of \( a \): \[ a + a \]

  4. 2 groups of \( b \): \[ b + b \]

Now, we can put it all together:

\[ (a + a + a + a) + (b) + (a + a) + (b + b) \]

Finally, to write the equivalent expression with the fewest possible terms, we combine like terms:

\[ (4a + 2a) + (1b + 2b) \]

This simplifies to:

\[ 6a + 3b \]

So the final equivalent expression with the fewest possible terms is:

\[ 6a + 3b \]

Similar Questions
  1. The expression `5x-2y+6x-3y` is represented on the picture to the left.Drag the terms into two groups, x terms in Group 1 and y
    1. answers icon 5 answers
  2. Question content area topPart 1 At a​ college, the cost of tuition increased by 8​%. Let d be the former cost of tuition.
    1. answers icon 1 answer
  3. An expression is shown/4(34x+3x−2)−2(3x2+1+3x) Rewrite an equivalent expression with the fewest terms possible (3 points)
    1. answers icon 5 answers
  4. Write the following expression using the fewest possible terms:( 5 + 38 y) + (14 y - 2) (1 point) Responses 1/8 y − 3 1/8 y
    1. answers icon 11 answers
more similar questions