Asked by Jane
Luigi sells one size of pizza but he claims that his selection of toppings allows for :more than 4000 different choices." What is the smallest number of toppings Luigi could offer?
Answers
Answered by
drwls
That depends upon the maximum number of toppings per slice. With N varieties of topping, and the total number of chosen toppings running from 0 to N, the possible number of toppings is
1 + N + N*(N-1)/2! + N(N-1)(N-2)/3! + .. + N + 1
The series continues for each N until you end up with last terms of N and 1. Try various value of N unti you exceed 4000 for the series sum.
For N = 10, the number of possibilities is
1 + 10 + 45 + 120 + 210 + 252 + 210 + 120 + 45 + 10 + 1 = 1024. This happens to equal 2^10. Although I have not proived it, the number of possible topping combinations with N toppings appears to ne 2^N. With 12 toppings, 4096 combinations are possible.
1 + N + N*(N-1)/2! + N(N-1)(N-2)/3! + .. + N + 1
The series continues for each N until you end up with last terms of N and 1. Try various value of N unti you exceed 4000 for the series sum.
For N = 10, the number of possibilities is
1 + 10 + 45 + 120 + 210 + 252 + 210 + 120 + 45 + 10 + 1 = 1024. This happens to equal 2^10. Although I have not proived it, the number of possible topping combinations with N toppings appears to ne 2^N. With 12 toppings, 4096 combinations are possible.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.