Let x and y be non-zero, rational numbers, and let z be an irrational number. In the first column of the table below is an expression. In the second column, determine whether the value of each expression is rational or irrational.(4 points) Rational Irrational xz x+y xy y+z

which answers are rational or irrational? answer correctly

1 answer

Let's analyze each expression to determine if its value is rational or irrational:

  1. \( xz \): Since \( x \) is a non-zero rational number and \( z \) is an irrational number, the product of a rational number and an irrational number is always irrational.

    • Answer: Irrational
  2. \( x + y \): Both \( x \) and \( y \) are non-zero rational numbers. The sum of two rational numbers is rational.

    • Answer: Rational
  3. \( xy \): Again, both \( x \) and \( y \) are non-zero rational numbers. The product of two rational numbers is rational.

    • Answer: Rational
  4. \( y + z \): Here, \( y \) is a non-zero rational number and \( z \) is an irrational number. The sum of a rational number and an irrational number is always irrational.

    • Answer: Irrational

In summary:

  • \( xz \): Irrational
  • \( x + y \): Rational
  • \( xy \): Rational
  • \( y + z \): Irrational
Similar Questions
  1. What type of number will result from 3.4059...−85?(1 point) Responses Irrational, because both numbers are irrational.
    1. answers icon 1 answer
  2. To which subset of real numbers does the following number belong?square root of seven (1 point) Responses rational numbers
    1. answers icon 2 answers
    1. answers icon 1 answer
  3. To which subset of real numbers does the number one-third belong?(1 point) Responses rational numbers rational numbers
    1. answers icon 1 answer
more similar questions