Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
Let V be the volume of the three-dimensional structure bounded by the region 0≤z≤1−x^2−y^2. If V=a/bπ, where a and b are positi...Asked by andy
Let V be the volume of the three-dimensional structure bounded by the region 0≤z≤1−x^2−y^2. If V=a/bπ, where a and b are positive coprime integers, what is a+b?
Answers
Answered by
Steve
One easy way to do this is to consider the figure to be a solid of revolution formed by revolving the parabola z = 1-x^2 around the z-axis.
v = ∫[0,1] πr^2 dz
where r = x
v = π∫[0,1] (1-z) dz
= π/2
The other, more direct way, of course, is to do a volume integral:
v = 4∫[0,1]∫[0,√(1-x^2)]∫[0,1-x^2-y^2] dz dy dx
= 4∫[0,1]∫[0,√(1-x^2)] 1-x^2-y^2 dy dx
= 4∫[0,1] (1-x^2)y - 1/3 y^3 [0,√(1-x^2)] dx
= 4∫[0,1] (1-x^2)^(3/2) - 1/3 (1-x^2)^(3/2) dx
= 8/3∫[0,1] (1-x^2)^(3/2) dx
= 8/3 * 1/8 (x√(1-x^2) (5-2x^2) + 3arcsin(x)) [0,1]
= π/2
v = ∫[0,1] πr^2 dz
where r = x
v = π∫[0,1] (1-z) dz
= π/2
The other, more direct way, of course, is to do a volume integral:
v = 4∫[0,1]∫[0,√(1-x^2)]∫[0,1-x^2-y^2] dz dy dx
= 4∫[0,1]∫[0,√(1-x^2)] 1-x^2-y^2 dy dx
= 4∫[0,1] (1-x^2)y - 1/3 y^3 [0,√(1-x^2)] dx
= 4∫[0,1] (1-x^2)^(3/2) - 1/3 (1-x^2)^(3/2) dx
= 8/3∫[0,1] (1-x^2)^(3/2) dx
= 8/3 * 1/8 (x√(1-x^2) (5-2x^2) + 3arcsin(x)) [0,1]
= π/2
Answered by
andy
thank you steve!
Answered by
Steve
Another easy way is to use cylindrical coordinates, like polar coordinates with a z-axis.
Just as dA = r dr dθ is the area element in polar coordinates,
dV = r dz dr dθ in cylindrical coordinates.
So, now we have z = 1-r^2
v = ∫[0,1]∫[0,2π]∫[0,1-r^2] r dz dr dθ
= ∫[0,1]∫[0,2π] r(1-r^2) dr dθ
= ∫[0,1] 2πr(1-r^2) dr
= 2π(1/2 r^2 - 1/4 r^4)
= π/2
Just as dA = r dr dθ is the area element in polar coordinates,
dV = r dz dr dθ in cylindrical coordinates.
So, now we have z = 1-r^2
v = ∫[0,1]∫[0,2π]∫[0,1-r^2] r dz dr dθ
= ∫[0,1]∫[0,2π] r(1-r^2) dr dθ
= ∫[0,1] 2πr(1-r^2) dr
= 2π(1/2 r^2 - 1/4 r^4)
= π/2
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.