Let P(x) be a nonconstant polynomial, where all the coefficients are nonnegative integers. Prove that there exist infinitely many positive integers n such that P(n) is composite.
Remember that if a and b are distinct integers, then P(a) - P(b) is divisible by a - b.
4 answers
HELP HELP HELP HLEP HLEP HELP
a few seconds with google led me to
https://math.stackexchange.com/questions/304330/proof-of-lack-of-pure-prime-producing-polynomials
that should get you started.
https://math.stackexchange.com/questions/304330/proof-of-lack-of-pure-prime-producing-polynomials
that should get you started.
uh ok ill check tat
tahkn s i tihkn i got it ok bye