Let AB be the diameter of circle Γ1. In the interior of Γ1, there are circles Γ2 and Γ3 that are tangent to Γ1 at A and B, respectively. Γ2 and Γ3 are also externally tangent at C. This exterior tangent cuts Γ1 at P and Q, with PQ=20. The area that is within Γ1 but not in Γ2 or Γ3 is equal to Mπ. Determine M.
11 answers
10
wrong
should be 26
WRONG!!!
wrong dr.cao.....
wrong de.cao
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
wrong dr.cao.....
calm down dr.cao 3rd
calm down
calm down
Dude don`t fight please tell the answer
50
Let the radius of larger circle be a, smaller ones be 'b' and 'c'.
Ans = pie(a^2-(b^2+c^2)) here we are only concerned with (a^2-(b^2+c^2))=
(a^2 - ((b + c)^2 - 2bc) = 2bc as a=b+c
Using intersecting chord theorem,
2bc= AC*BC/4= PC*CQ/4= 10*10/4 as diameter bisects chord
= 50 Ans
Let the radius of larger circle be a, smaller ones be 'b' and 'c'.
Ans = pie(a^2-(b^2+c^2)) here we are only concerned with (a^2-(b^2+c^2))=
(a^2 - ((b + c)^2 - 2bc) = 2bc as a=b+c
Using intersecting chord theorem,
2bc= AC*BC/4= PC*CQ/4= 10*10/4 as diameter bisects chord
= 50 Ans
SORRY GUYS I MEANT TO SAY ITS 60 SORRY DON'T USE 50 ITS 60!!