so, check n=1. The 2nd derivative of sinx is -sinx since
d/dx(sinx) = cosx
d/dx(cosx) = -sinx
Now assume it is true for k=2n. What about 2n+2?
y(2n)sinx = (-1)n sinx
y(2n+1)sinx = (-1)n cosx
y(2n+2)sinx = -(-1)n cosx = (-1)n+1 sinx
QED
Knowing that derivative of sinx is cosx and derivative of cosx is -senx, prove by induction, that the 2n derivative of sinx = ((- 1) ^ n ) * sinx and the 2n derivative of cosx = ((- 1) ^ n)* cosx.
1 answer