Juan ran the lemonade stand for 3 more days after his first day profit of $12. Each day, he used the money from sales to purchase more lemons, cups, and sugar to make more lemonade. The table shows how much he spent and earned each day.

What is the expression needed to find his total profit?

1 answer

To find Juan's total profit from running the lemonade stand over the 4 days, we can use the following approach.

Let's define a few variables based on the information:

  • P = Profit
  • E = Earnings from sales
  • S = Spending on supplies (lemons, cups, sugar, etc.)

From the problem, we know:

  1. Day 1 Profit = $12
  2. For each day that follows, we need to compute his earnings and expenses.

Assuming we have the following earnings and expenses for each subsequent day (let's denote Day 2, Day 3, and Day 4):

  • E2, S2 = Earnings and spending on Day 2
  • E3, S3 = Earnings and spending on Day 3
  • E4, S4 = Earnings and spending on Day 4

The profit for each day can be calculated as:

  • Profit for Day 1 = E1 - S1 = $12 (this gives us the first profit).
  • Profit for Day 2 = E2 - S2
  • Profit for Day 3 = E3 - S3
  • Profit for Day 4 = E4 - S4

Now, to get the total profit for all four days, you would sum the profits for each day:

\[ \text{Total Profit} = (E1 - S1) + (E2 - S2) + (E3 - S3) + (E4 - S4) \]

Since we know that the profit from Day 1 was $12, we can incorporate this into our expression:

\[ \text{Total Profit} = 12 + (E2 - S2) + (E3 - S3) + (E4 - S4) \]

This expression gives you a way to calculate Juan's total profit over the four days by replacing E2, S2, E3, S3, E4, and S4 with their actual values.