John runs a marathon (26.2 miles) in 4 hours. Determine how

many miles he runs per hour if the proportional relationship is
represented by 4y = 26.2x. (1 point)

1 answer

To determine how many miles John runs per hour, we can analyze the equation given:

\[ 4y = 26.2x \]

In this equation, \( y \) represents the miles per hour, and \( x \) represents the hours. Since John runs for 4 hours, we can substitute \( x = 4 \) into the equation:

\[ 4y = 26.2(4) \]

Calculating the right side:

\[ 4y = 104.8 \]

Next, we can solve for \( y \) by dividing both sides of the equation by 4:

\[ y = \frac{104.8}{4} \]

Calculating the division:

\[ y = 26.2 \]

Thus, John runs 26.2 miles in 4 hours. To find out how many miles he runs per hour, we divide the total miles by total hours:

\[ \text{Miles per hour} = \frac{26.2 \text{ miles}}{4 \text{ hours}} = 6.55 \text{ miles per hour} \]

Therefore, John runs 6.55 miles per hour.