Jevonte bought stock in a company two years ago that was worth xx dollars. During the first year that he owned the stock, it increased by 31%. During the second year the value of the stock increased by 16%. Write an expression in terms of xx that represents the value of the stock after the two years have passed.

1 answer

To find the value of the stock after two years of increases, we can apply the percentage increases step by step.

  1. First year increase: The stock increases by 31%. This can be represented as: \[ \text{Value after first year} = x + 0.31x = 1.31x \]

  2. Second year increase: The value at the end of the first year is then increased by 16%. So we take the value after the first year and increase it by 16%: \[ \text{Value after second year} = 1.31x + 0.16(1.31x) = 1.31x \times 1.16 \]

  3. Simplifying: Now we calculate \(1.31 \times 1.16\): \[ 1.31 \times 1.16 = 1.5216 \]

Thus, the value of the stock after two years is: \[ \text{Value after two years} = 1.5216x \]

So, the expression that represents the value of the stock after two years is: \[ 1.5216x \]