To determine Jane's profit, we first need to calculate her total sales revenue from the bracelets sold under Options A and B, and then subtract her initial expense of $30.
Calculating Revenue:
-
Option A (5 bracelets for $6):
- Jane made 3 sales of Option A.
- Each sale brings in $6, so for 3 sales: \[ 3 \times 6 = 18 \text{ (dollars)} \]
-
Option B (3 bracelets for $4):
- Jane made 6 sales of Option B.
- Each sale brings in $4, so for 6 sales: \[ 6 \times 4 = 24 \text{ (dollars)} \]
Total Revenue: \[ 18 + 24 = 42 \text{ (dollars)} \]
Calculating Profit: Profit is calculated by subtracting the cost of materials from the total revenue: \[ \text{Profit} = \text{Total Revenue} - \text{Cost} \] \[ \text{Profit} = 42 - 30 = 12 \text{ (dollars)} \]
Thus, the correct numerical expression for Jane’s profit is: \[ (3 \cdot 6 + 6 \cdot 4) - 30 \] And Jane’s profit was $12.
The correct answer from the provided options is: (3⋅6+6⋅4)−30; Jane’s profit was $12.