It is a proof.

Given: line DB bisects line AC
line AD is parallel to line BE
AD=BE
Prove: DB=EC

there are two triangles connected together by point B. They are labled A D B and B E C. D and E are the top points of the triangles. they look like they would be right angle triangles but it isn't proven. B and C would be the right angles they are facing the same way

Suggestions: use SAS to show the triangles are congruent. Since DB bisects AC, AB=AC. since angle DAB = angle EBC (why?), triangle ADB is oongruent to triangle BEC.
Hint for the angles: AD || BE, so AC is a transversal. Now look for something about corresponding angles.