Asked by kchik
INTEGRATION USING PARTIAL FRACTIONS
a) 4x^2-3x+2 / x^3-x^2-2x dx
b) x^2 / (x+1)(x+1)^2 dx
c) 3-3x / 2x^2+6x dx
d) x^2+2x-1 / (x^2+1)(x-1) dx
##anybody can help me for this question?
a) 4x^2-3x+2 / x^3-x^2-2x dx
b) x^2 / (x+1)(x+1)^2 dx
c) 3-3x / 2x^2+6x dx
d) x^2+2x-1 / (x^2+1)(x-1) dx
##anybody can help me for this question?
Answers
Answered by
Steve
I assume you have trouble doing the partial fractions, not the integration?
x^3-x^2-2x = x(x-2)(x+1)
so, what you are looking for is a combination of fractions
A/x + B/(x-2) + C/(x+1) which when placed over a common denominator of (x^3-x^2-2x) make a numerator of (4x^2-3x+2).
To add those simpler fractions, you have a numerator of
A[(x-2)(x+1)]+B[(x(x+1)]+C[x(x-2)]
= Ax^2-2Ax-2A
+ Bx^2+Bx
+ Cx^2-2Cx
= (A+B+C)x^2 + (-2A+B-2C)x + (-2A)
for that to be identical to 4x^2-3x+2, you need
A+B+C = 4
-2A+B-2C = -3
-2A = 2
or, A = -1, B=3, C=2
so you have -1/x + 3/(x-2) + 2/(x+1)
integrate that to get some logs.
do the other likewise. Note:
quadratic factors below require (Ax+B) above
repeated factors below require all powers. e.g. */(x+1)^2 --> A/(x+1) + B/(x+1)^2, though some numerators may turn out to be zero.
x^3-x^2-2x = x(x-2)(x+1)
so, what you are looking for is a combination of fractions
A/x + B/(x-2) + C/(x+1) which when placed over a common denominator of (x^3-x^2-2x) make a numerator of (4x^2-3x+2).
To add those simpler fractions, you have a numerator of
A[(x-2)(x+1)]+B[(x(x+1)]+C[x(x-2)]
= Ax^2-2Ax-2A
+ Bx^2+Bx
+ Cx^2-2Cx
= (A+B+C)x^2 + (-2A+B-2C)x + (-2A)
for that to be identical to 4x^2-3x+2, you need
A+B+C = 4
-2A+B-2C = -3
-2A = 2
or, A = -1, B=3, C=2
so you have -1/x + 3/(x-2) + 2/(x+1)
integrate that to get some logs.
do the other likewise. Note:
quadratic factors below require (Ax+B) above
repeated factors below require all powers. e.g. */(x+1)^2 --> A/(x+1) + B/(x+1)^2, though some numerators may turn out to be zero.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.