To integrate 1/x + 2/x^3 + 2, we can break it down into separate integrals and then sum them together.
∫(1/x + 2/x^3 + 2) dx
= ∫(1/x) dx + ∫(2/x^3) dx + ∫2 dx
= ln|x| - 1/(2x^2) + 2x + C
Therefore, the integrated form of the given expression is ln|x| - 1/(2x^2) + 2x + C, where C is the constant of integration.
Integrate 1/x +2/x^3+2
1 answer