Asked by Andre

Integrate 1/sinx dx using the identity sinx=2(sin(x/2)cos(x/2)). I rewrote the integral to 1/2 ∫ 1/(sin(x/2)cos(x/2))dx, but I don't know how to continue. Thanks for the help.

Answers

Answered by Steve
1/2 ∫ 1/(sin(x/2)cos(x/2))dx
let
u = sin(x/2)
du = 1/2 cos(x/2) dx
or, dx = 2/cos(x/2) du

Then you have

1/4 ∫1/u 2/(cos(x/2))dx
= 1/4 ∫ 1/u du
= 1/4 ln(sin(x/2)) + C

Now, we all know that
∫ csc(x)dx = -ln(cscx + cotx)

so what gives here?

1/4 ln(sin(x/2))
= -1/4 ln(1/sin(x/2))
= -1/2 ln(1/sqrt(1-cosx))
gotta run, but I think if you manipulate things a bit and adjust the C it will work out to be the same.

I'll check in later to make sure.
There are no AI answers yet. The ability to request AI answers is coming soon!

Related Questions