In the proof that ab+cd
, where a, b, c, and d are integers and b and d are non-zero, explain why ad+bcbd
is a rational number.(1 point)
Responses
By the Closure Property, a quotient of imaginary numbers is a rational number.
By the Closure Property, a quotient of imaginary numbers is a rational number.
By the Closure Property, ad+bc
and bd
are both quotients of integers, and so ad+bcbd
is a quotient of two integers.
By the Closure Property, A d plus b c and b d are both quotients of integers, and so the fraction with numerator A d plus b c and denominator b d is a quotient of two integers.
By the Closure Property, ad+bc
and bd
are both integers, and so ad+bcbd
is a quotient of two integers.
By the Closure Property, A d plus b c and b d are both integers, and so the fraction with numerator A d plus b c and denominator b d is a quotient of two integers.
By the Closure Property, ad+bcbd
reduces to a whole number, which is a subset of rational numbers.
3 answers
2. C By the closure property, ad + bc and bd are both integers
3. A rational
4. D rational
5. B jolene