If the coefficient of static friction is 0.35 and the normal force is 80 newtons, what is the maximum frictional force of the surface acting on the object?

A.
9.8 newtons
B.
28 newtons
C.
80 newtons
D.
23 newtons
E.
35 newtons

1 answer

The maximum frictional force can be calculated using the formula:

\[ f_{s, \text{max}} = \mu_s \cdot N \]

where:

  • \( f_{s, \text{max}} \) is the maximum static frictional force,
  • \( \mu_s \) is the coefficient of static friction (which is 0.35 in this case),
  • \( N \) is the normal force (which is 80 newtons in this case).

Substituting the values into the formula:

\[ f_{s, \text{max}} = 0.35 \cdot 80 \]

Calculating this gives:

\[ f_{s, \text{max}} = 28 \text{ newtons} \]

So the maximum frictional force of the surface acting on the object is 28 newtons.

The correct answer is B. 28 newtons.